GEOTECHNICAL PRE-DESIGN REPORT Donner Summit PUD Wastewater Treatment Plant Expansion Nevada County, California

March 2011

Prepared for:
Donner Summit PUD

Prepared by:
BLACKBURN CONSULTING
11521 Blocker Drive, Suite 110
Auburn, CA 95603
(530) 887-1494

Auburn Office:

11521 Blocker Drive, Suite 110 • Auburn, CA 95603 t530) 887-1494 • Fax (530) 887-1495

Modesto Office: (209) 522-6273 West Sacramento Office: (916) 375-8706

Geotechnical . Construction Services . Forensics

March 15, 2011 BCI File No. 1856.2

Mr. Tom Skjelstad, General Manager Donner Summit PUD 53823 Sherrit Lane Soda Springs, CA 95728

Subject:

GEOTECHNICAL PRE-DESIGN REPORT

Donner Summit PUD Wastewater Treatment Plant Expansion

Nevada County, California

Dear Mr. Skjelstad:

Blackburn Consulting (BCI) prepared this Pre-Design Report to provide preliminary design recommendations for the expansion of the wastewater treatment plant (WWTP). We incorporate comments made regarding our Draft Pre-Design Report dated January 6, 2011. We prepared this report in accordance with our original agreement dated August 31, 2010, and subsequent Change Order agreement dated October 20, 2010. We expect to Some additional geotechnical work may be required for final design, depending on final project layout, grade and loading conditions.

Please call if you have questions on this report or require additional information. We appreciate this opportunity to serve you.

Sincerely,

BLACKBURN CONSULTING

Rob Pickard, C.E.G.

Project Engineering Geol

Distribution: Client (2)

Stantec, Attn: Dave Price (2)

ENGINEERING

E OF CALIFO

Rick Sowers, P.E.

Senior Project Manager, Princ

GEOTECHNICAL PRE-DESIGN REPORT

Donner Summit PUD Wastewater Treatment Plant Expansion Nevada County, California

TABLE OF CONTENTS

INTRODUCTION
SCOPE OF SERVICES
SITE AND PROJECT DESCRIPTION
SITE GEOLOGY AND SEISMICITY
SUBSURFACE EXPLORATION
REFRACTION SEISMIC PROFILES
GROUNDWATER
LABORATORY TESTS
GEOLOGIC HAZARDS
Faulting
Ground Shaking
Liquefaction
Landslides and Slope Stability
Compressible Soil
Expansive Soil
PRELIMINARY RECOMMENDATIONS
Grading and Excavation
Fill/Cut Slopes
Structure Areas
Foundations
Seismic Design Criteria
Underground Utilities
Pavement Sections
Erosion
LIMITATIONS

FIGURES

Figure 1 – Vicinity Map

Figure 2 – Site Map

Figure 3 – Regional Geologic Map

Figure 4 – Soils Map

Figure 5 – Regional Fault Map

APPENDIX A

Test Pit Logs

Legend to Logs

Seismic Refraction Profiles

APPENDIX B

Laboratory Test Results

APPENDIX C

Test Pit Photos

Site Photos

APPENDIX D

Pavement Section Calculations

INTRODUCTION

Blackburn Consulting (BCI) prepared this Geotechnical Pre-Design Report to provide preliminary geotechnical criteria for the proposed wastewater treatment plant (WWTP) expansion project. This study is based on a preliminary layout (emailed to BCI on 12/17/2010) of new facilities as prepared by Stantec. Additional geotechnical study may be required for final design depending on the final location, grades and loading conditions.

SCOPE OF SERVICES

To prepare this report, BCI:

- Reviewed published geologic, soils, seismic and topographic mapping of the site.
- Attended a site review on August 31, 2010, with representatives from the DSPUD, USFS and Stantec.
- Reviewed and commented on initial site layouts prepared by Stantec.
- Excavated eight test pits and completed four seismic refraction profiles near the proposed improvements.
- Conducted laboratory testing on soil samples obtained from the test pits.
- Developed preliminary design recommendations for the proposed improvements.

SITE AND PROJECT DESCRIPTION

The site is located near the community of Soda Springs in Nevada County, California. We show the project location on Figure 1.

The preliminary layout prepared by Stantec shows the proposed improvements located immediately north of the existing treatment plant. The new improvements include:

- Sludge thickening tank, mixing/aeration/thickening equipment and drying bed
- Membrane and equipment building
- Equalization storage tank
- Mixing pumps and blowers
- Headworks
- Access road across a ravine to the new storage tank

Site topography generally slopes to the northwest, toward the Yuba River. A northeast-trending ridge runs through the site and a parallel swale separates the ridge from the existing Operations Building.

We expect the new buildings will be concrete block or wood-frame with slab-on-grade floors. The storage tank is shown to be 700,000 gallon capacity, with diameter approximately 80 feet; height about 30 feet, at a pad elevation of about 6633 feet. Maximum fills are expected to be 10-15 ft, located at the northwest corner of the equipment building and where the access road crosses the ravine. Maximum cuts are expected to be about 6-8 ft, located at the southeast corner of the equipment building and near the center of the storage tank. We expect the tank will be established on a full-cut pad and the perimeter access road on minor fill.

Numerous large, granitic boulders, some exceeding 20 ft dimension and extending 20+ft above ground, are present across the site. The preliminary layout is intended to avoid the massive boulders; smaller boulders will be involved in project grading. We show photos of the site topographic features in Appendix C.

We show the site topography, rock outcrops greater than 10 feet in dimension, and proposed improvements on Figure 2.

SITE GEOLOGY AND SEISMICITY

Published geologic mapping¹ shows the site to be underlain by Quaternary glacial deposits and Mesozoic granitic rock. Based on our observations, the earth materials appear to be predominately glacial deposits consisting of large granitic boulders embedded within a silty sand matrix. "Bedrock" was not apparent, as most of the boulders appear "detached" or "semi-detached"; however, some of the surface rock may represent the top of bedrock (i.e., continuous solid rock with depth). The northeast trending ridge through the site appears likely to represent a glacial moraine and not a bedrock ridge. We show the generalized site geology in Figure 3.

Soil mapping by the USDA² indicates a 4 to 5 foot soil cover comprised of well-drained, sandy loam with low shrink-swell potential (based on small quantities of clay soils). We show the mapped soil units in Figure 4.

The site is in an area with moderate historic seismicity. Toppozada³ shows this area to have experienced only a few magnitude 5.0-5.4 earthquakes since 1869. More significant earthquakes have occurred further to the east, including earthquakes of magnitude 6.0 in 1948 and 1966 on the Dog Valley Fault, located approximately 20 miles east. Neither of these earthquakes is recorded as causing significant damage in the project vicinity.

The closest "active" fault (defined as surface displacement within Holocene time, generally the past 11,000 years) is the Dog Valley Fault. This fault is part of a zone of seismic activity which includes the Mohawk Valley, West Tahoe and Dollar Point Faults, each considered Late Quaternary or younger. We show the regional faults in Figure 5.

¹ Saucedo, G.J. and Wagner, D.L., "Geologic Map of the Chico Quadrangle", scale 1:250,000, California Division of Mines and Geology, 1992.

² USDA Web Soil Survey 2.0, Tahoe National Forest Area, California, 2009.

³ Toppozada, et. al., "Epicenters of and Areas Damaged by $M \ge 5$ California Earthquakes, 1800-1999", California Division of Mines and Geology, Map Sheet 49, 2000.

SUBSURFACE EXPLORATION

BCI observed and logged eight test pits at the approximate locations shown on Figure 2. Our excavation subcontractor used a Case 580K backhoe equipped with 18 inch wide digging bucket to excavate the pits. We include soil descriptions and other information pertaining to each test pit in Appendix A, and photos of each pit in Appendix C.

The test pits encountered mostly cobbles and boulders within a silty sand matrix. The backhoe was able to excavate to depths of about 3-6 feet before encountering refusal on large boulders. We estimate the cobble and boulder percentage at about 20-60% of the total volume with dimensions ranging from about 6-30 inches. The uppermost 6 inches is primarily silty sand with a large percentage of organics (pine needles and dark humus material).

REFRACTION SEISMIC PROFILES

BCI performed four seismic refraction surveys (SR1 through SR4) at the approximate locations shown on Figure 2. Each seismic line consists of 5 shot points distributed along a collinear array of 12 geophones, with a multi-channel receiver (seismograph) located at one end of the array to collect the data. We placed geophones at 5-foot intervals along the array. We generated compressional wave energy (P-waves) at each shot point using multiple impacts with a 20-pound sledge hammer striking a steel placed on the ground surface. We used a *Geometrics Geode* seismograph to detect, digitize, and record the P-waves.

We analyzed the data using the computer program SeisImager by Geometrics, Inc. The seismic profiles are presented in Appendix A. The profiles show a general increase in velocity with depth, ranging from about 1,000 to 5,000 feet per second (fps). These velocities, extending to a depth of about 20 ft, suggest generally unconsolidated material consistent with glacial deposits. Bedrock velocities, typically in excess of 6,000 fps, were not recorded in any of the four profiles.

GROUNDWATER

We did not observe free groundwater in the test pits during our field exploration in October 2010. We expect that groundwater may be seasonally present as perched water within low-lying areas (swales/drainages) during and shortly following periods of wet weather and snowmelt runoff.

LABORATORY TESTS

We performed grain size analysis, maximum dry density, R-value, and direct shear tests on representative soil samples from the test pits, excluding cobbles and boulders and screened on 3-inch sieve. The grain size analyses show 16-31% fines (passing No. 200 mesh sieve), classed as "SM" per Unified Soil Classification System. The maximum dry density of these (screened) materials is 117 pcf at 13% optimum moisture. Direct shear tests on samples remolded to 95% relative compaction show soil cohesion of 364 psf and phi angle of 39°. We attach the complete laboratory test reports in Appendix B.

GEOLOGIC HAZARDS

Faulting

The Fault Activity Map of California and Adjacent Areas (Jennings, 1994)⁴ does not identify Holocene and/or Late Quaternary age faults (displacement within the last 700,000 years) within or adjacent to the project. The project does not lie within or adjacent to an Alquist–Priolo Earthquake Fault Zone (Hart, 2007)⁵. On this basis, we consider the potential for ground rupture and/or fault creep hazard to be low for this site.

Ground Shaking

The California Geological Survey (CGS)⁶, indicates that for a seismic event with a 10 percent probability of exceedance in 50 years, expect a peak horizontal ground acceleration (PGA) on the order of 0.24g. We provide seismic design criteria in the Preliminary Recommendations section, below.

Liquefaction

Liquefaction can occur when loose to medium dense, granular, saturated soils (generally within 50 feet of the surface) are subjected to ground shaking. The site is underlain by medium dense granular soils over granitic rock that is not generally susceptible to liquefaction. With proper grading and foundation preparation, we consider the potential for damaging liquefaction to be low.

Landslides and Slope Stability

We did not observe any evidence of landslides or slope instability at the site. With proper site grading, we do not consider the proposed improvements to affect slope stability.

Compressible Soil

The soils encountered in the upper 5 ft in the test pits have potential for compression under moderate structural loads. This can be mitigated by site grading and foundation design, described further in the Preliminary Recommendations section, below.

Expansive Soil

Clay or clayey soils can expand when wetted and contract when dried. The surface soils at the site contain little clay; therefore, we consider the potential for damage due to expansive soils is low. Imported soils used for engineered fills on the site must have a low expansion potential.

⁴ Jennings, Charles W., 1994, Fault Activity Map of California and Adjacent Areas with Location and Ages of Recent Volcanic Eruption, California Division of Mines and Geology.

⁵ Hart, E.W., 2007 (Interim Revision), Fault-Rupture Hazard Zones in California", Special Publication 42, Califonia Geological Survey.

⁶ California Geological Survey, Probabilistic Seismic Hazards Mapping Ground Motion Page (www.consrv.ca.gov)

PRELIMINARY RECOMMENDATIONS

The following recommendations are based on the preliminary project layout and this initial study. BCI will provide further recommendations for final design of the specific project elements.

Grading and Excavation

Strip and dispose of all surficial vegetation, tree roots, debris, and other deleterious materials (generally uppermost 6 inches). These materials are not suitable for use in engineered fill.

In general, we expect that excavations to a depth of about 10 ft can be completed with conventional heavy grading equipment (D10 or larger with rippers), provided the facilities are located to avoid the very large boulders/rock outcrops. Boulders and/or shallow rock in some areas may create excavation difficulties that require special handling and disposal. Depending on the final location of some facilities, minor blasting may be required to remove unavoidable large boulders/rock outcrops. Areas of deeper excavation and/or utility trenches may require special excavation techniques (such as chiseling, air tools or light charges) to facilitate excavation.

Fill/Cut Slopes

Place new fill on or against existing slopes by benching into native materials with discrete, stepped benches, one to two feet in height and width. Extend the benching (or overexcavate) laterally such that compacted fill extends a minimum of 5 feet beyond the building perimeter. If benching interferes with existing structures or utilities, BCI can approve modifications on a case-by-case basis.

Place fill in horizontal lifts with a maximum loose lift thickness of 8 inches, moisture condition to within 2% of optimum and compact to a minimum 90% relative compaction, per ASTM D 1557 test procedure. Construct fill slopes no steeper than 2:1. To achieve adequate compaction on the face of fill slopes, over-build the slopes and then cut back to the design grade. Track-walking is not an adequate method to compact the face of slopes.

We do not anticipate significant cut slopes for this project. Where necessary, construct cut slopes no steeper than 1.5:1 (horizontal to vertical).

Structure Areas

We recommend the following general steps in structure areas (buildings and tanks) to provide foundation support and mitigate detrimental settlement.

- 1. Overexcavate the soil/boulders within the proposed building/tank footprints to a depth of 3 feet below pad grade, and laterally to 5 ft beyond the building/tank limits. BCI must observe the base of the excavation for uniformity and suitability to determine if additional excavation is necessary.
- 2. Scarify the exposed soil to a depth of 8-inches, moisture condition to within 2% of optimum moisture and compact to at least 90% relative compaction based on current ASTM D 1557 test method. Inability to achieve the required compaction on the scarified materials may be used as a field criterion to identify areas requiring additional removal, moisture conditioning and/or compaction.

- 3. Backfill the overexcavated areas with acceptable fill meeting the following criteria:
 - Contain no visual concentration of organics, debris or deleterious materials,
 - Have a maximum particle size of 4-inches with at least 50% passing the No. 4 Sieve,
 - Expansion Index \leq 25, per ASTM D4829.

The native, overexcavated soil (below the surface organic layer) may be used for backfill provided it is screened to exclude rock larger than 4 inches in greatest dimension.

Foundations

Conventional footing foundations are suitable for typical lightly to moderately loaded structures, conditioned on appropriate ground preparation (i.e., overexcavation and recompaction per above). Design perimeter footings a minimum 15 inches wide and, to mitigate frost heave, a minimum 24 inches deep into bearing material. Design isolated interior footings with minimum width of 3 feet and minimum depth of 24 inches. For preliminary design, use an allowable bearing capacity of 2,500 psf for footings placed per these recommendations, with one-third increase allowable for transient loads such as wind or seismic.

For the new storage tank, similar support to above is available for a concrete ringwall footing established within compacted fill placed per above. Design ring footing a minimum 15 inches wide and a minimum 24 inches deep into bearing material. If utilized, design interior column footing with minimum width of 3 ft and minimum depth of 24 inches into bearing material.

Lateral forces may be resisted by friction developed between the base of the footings and the underlying soil. Use a coefficient of friction to resist sliding of 0.35. Resistance to lateral loads may be provided by assuming a passive pressure based on an equivalent fluid weight of 300 pcf. In designing the structure to resist lateral loads, the upper 12 inches of soil should be ignored and the lateral resistance of the soil should be limited to 3,000 psf.

The anticipated superposed loads are not expected to result in significant settlement for either the proposed buildings or storage tank. For the above allowable bearing capacities, we estimate total settlement ≤ 1 -inch and differential settlement $\leq \frac{1}{2}$ -inch. This will be confirmed in final design based on total loads.

For slab-on-grade floors, and assuming grading as recommended above, place a minimum of 4 inches of washed, crushed, and compacted rock below the slab to provide uniform support. Grading for crushed rock beneath the floor slabs should meet 100% passing the ³/₄ inch sieve and less than 5% passing the No. 4 sieve. Exterior flatwork may be placed directly on the prepared subgrade with or without the use of rock underlayment, provided that the subgrade is free of debris, uniformly compacted and thoroughly wetted before placing concrete.

Seismic Design Criteria

We classify the site in accordance with California Building Code (CBC, 2007) as Site Class C The Class Type is based on our site review, test pits, seismic refraction lines and mapped geologic conditions. We provide a summary of California Building Code design parameters in the Table 1 below.

TABLE 1: Seismic Design Parameters (CBC 2007)

Site Class	C
S_s – Mapped Acceleration Parameter	1.097 g
S_I – Mapped Acceleration Parameter	0.371 g
F_a – Site Coefficient	1.0
F_{ν} – Site Coefficient	1.429
<i>S_{MS}</i> – MCE* Spectral Response Acceleration, Short Period	1.097 g
S_{MI} – MCE* Spectral Response Acceleration, 1-Second Period	0.530 g
S _{DS} – 5% Damped Design Spectral Response Acceleration, Short Period	0.731 g
S _{DI} – 5% Damped Design Spectral Response Acceleration, 1-Second	0.354 g

^{*} Maximum Considered Earthquake

Underground Utilities

In general, we expect typical trenching equipment (backhoe/excavator) can excavate the surface soils, alluvium, and glacial deposits for utility placement. Large boulders may require special excavation techniques (overexcavation, chiseling, air tools, etc.). Granitic rock may require blasting to facilitate utility excavation. Utility excavations will generate large cobble and boulder size material that will be unsuitable for trench backfill. We expect select (import) material will be necessary for trench backfill.

Common trench shoring and sloping techniques should be applicable. Dewatering may be required in trench excavations through the low portions of the site during early spring/summer months. For frost protection, consider utility depths of 3 feet or more.

Pavement Sections

The results of the two R-value tests are 80 and 82. Owing to variations in the quality of the native soil we recommend a design R-value of 50 (consistent with Class 2-ASB) for new pavement structural sections. Table 2 presents the recommended pavement sections for Traffic Indices (TI) ranging from 5.0 to 7.5, with basement R-value of 50, in accordance with Caltrans Flexible Pavement Design Methods (Highway Design Manual, Chapter 600).

TABLE 2:	New F	lexible	Pavemen	t Sections*
(Baseme	ent R-v	value = 50)

Pavement	TI							
Section	5.0	6.0	7.0	7.5				
HMA-A (ft)	0.20	0.25	0.35	0.35				
AB (ft)	0.35	0.35	0.35	0.45				
Full Depth AC (ft)	0.35	0.45	0.55	0.60				

^{*}Calculated using CAL FP v. 1.1

Any import fill material should have a minimum R-value of 50 for use of these sections. We include the R-value results in Appendix B and pavement section calculations in Appendix D.

Subgrade should be free of material greater than 4-inches in diameter. For full depth asphalt sections subgrade should be free of material greater than 2-inches. Scarify subgrade to a depth of 6 inches and compact to a minimum of 95% relative compaction (based on ASTM D1557 test method).

Aggregate baserock (AB) should conform to Caltrans Class 2 requirements. Moisture condition and compact the AB to a minimum 95% relative compaction (based on ASTM D1557 test method). Prior to placing asphalt, the subgrade and aggregate baserock should be stable under the weight of a loaded water truck. Yielding or pumping subgrade, or the inability to achieve 95% relative compaction, can be used as a field criterion for supplemental stabilization measures, such as scarification and drying, subexcavation and replacement, or use of stabilization fabric or geogrid.

If needed, BCI and/or the project engineer should review soil conditions and approve mitigation methods prior to implementation.

Where temporary access roads will be constructed, grade the access to a level condition in accordance with the grading recommendations provided above, scarify the subgrade to a depth of 6 to 8 inches, moisture condition, and compact to a minimum of 90% relative compaction. Place a minimum of 4 inches of crushed rock (3/4 inch) or Class 2 aggregate baserock on the prepared subgrade and compact with a smooth drum roller.

Erosion

Considering the predominately granular nature of the on-site soils, there is a relatively high potential for erosion. Work disturbing the surface soils and glacial deposits should anticipate potential erosion and include mitigation measures. Exposed rock areas will have low erosion potential.

LIMITATIONS

The recommendations provided in this report are for preliminary design of the facility layout as proposed by Stantec. BCI will prepare a design-level geotechnical report for the project once the project locations are confirmed and design details (grades, loads, etc) are established. Further subsurface investigation, testing and geotechnical evaluation may be required for final design.

BCI performed services in accordance with generally accepted geotechnical engineering principles and practices currently used in this area. We do not warranty our services.

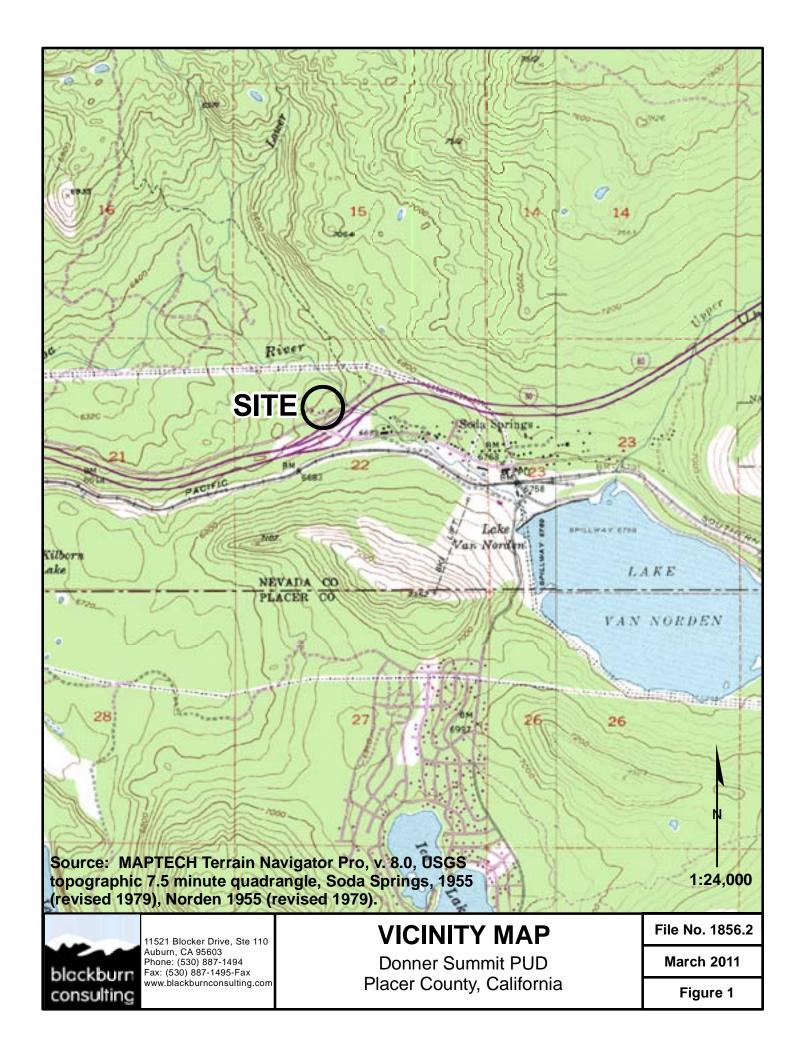
BCI based this report on the current site conditions. We assumed the soil, rock and ground water conditions are representative of the subsurface conditions on the site. Actual conditions between test pits and borings could be different.

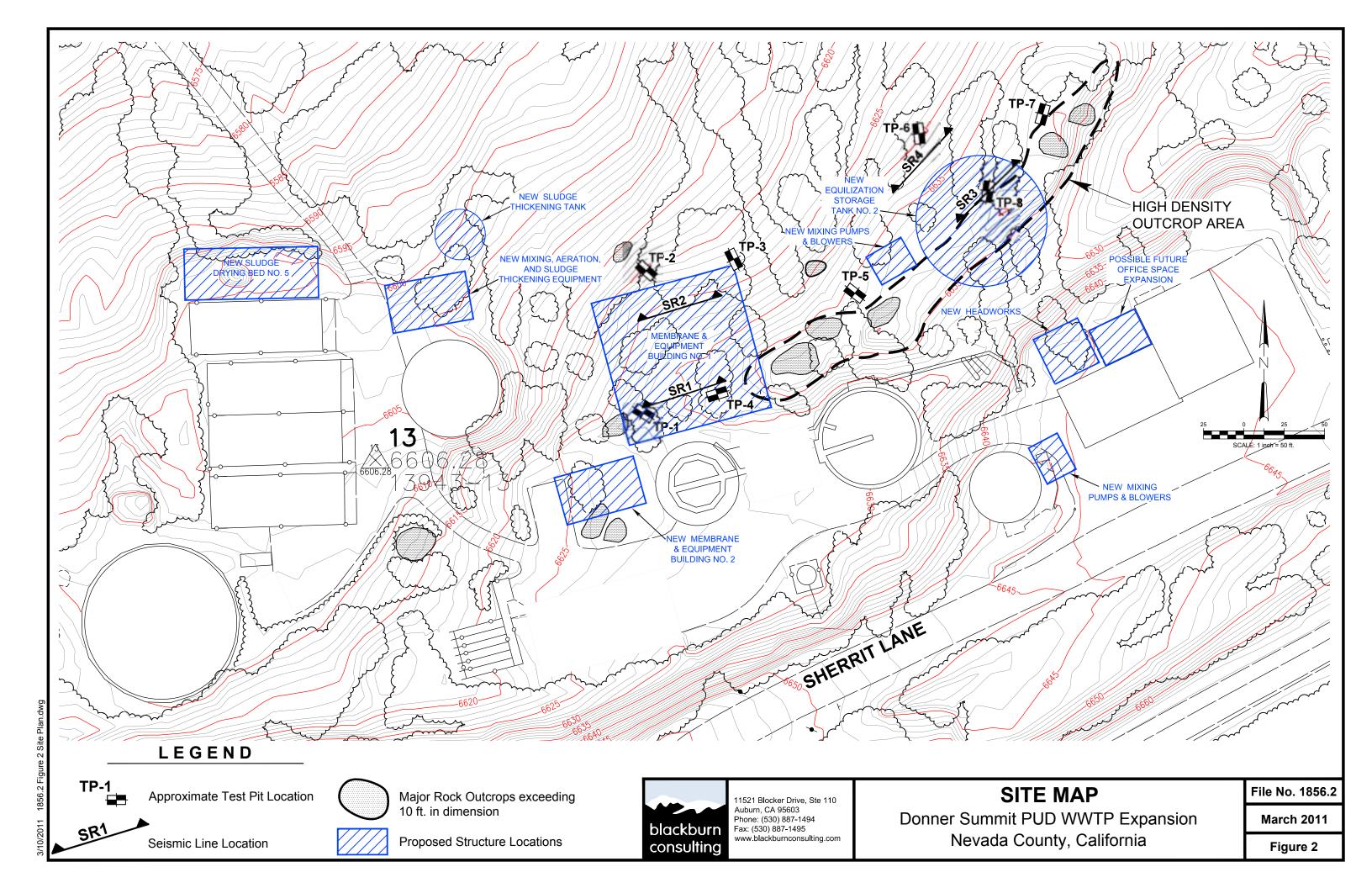
Our scope did not include evaluation of on-site hazardous materials, soil corrosion potential, or flooding.

Modern design and construction are complex, with many regulatory sources/restrictions, involved parties, construction alternatives, etc. It is common to experience changes and delays. The owner should set aside a reasonable contingency fund based on complexities and cost estimates to cover changes and delays.

Logs of our test pits and borings are presented in Appendix A. The lines designating the interface between soil and rock types are approximate. The transition between soil/rock types may be abrupt or gradual. Our recommendations are based on the final logs, which represent our interpretation of the field logs and general knowledge of the site and geological conditions.

Figure 1 – Vicinity Map


Figure 2 – Site Map


Figure 3 – Regional Geologic Map

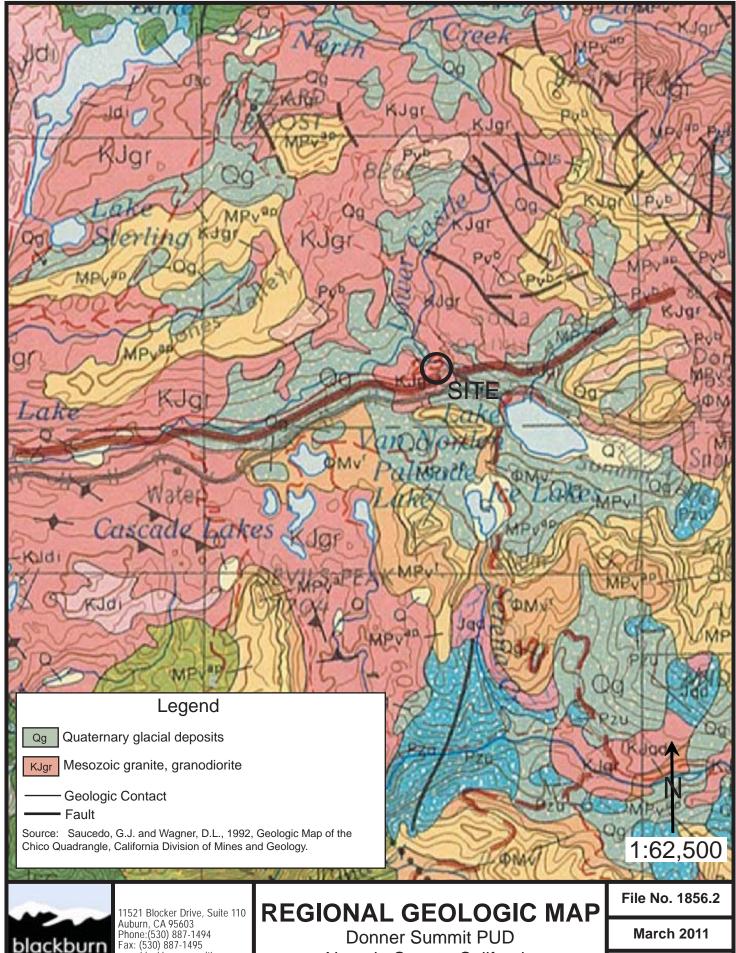
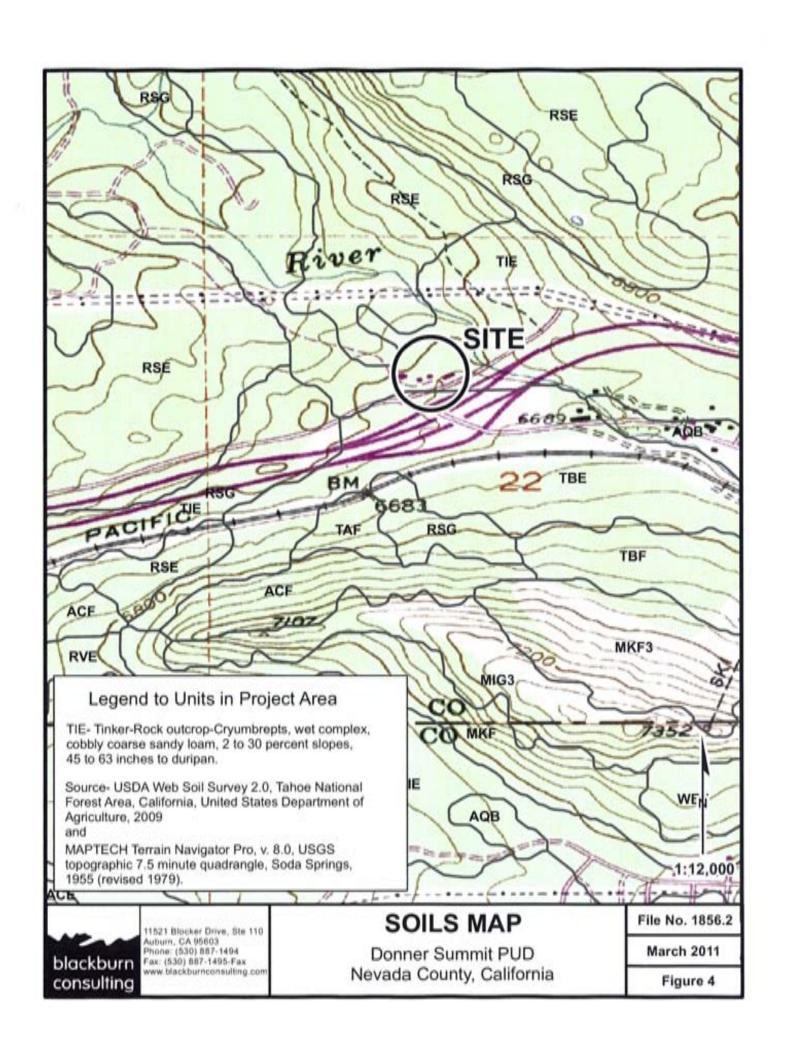
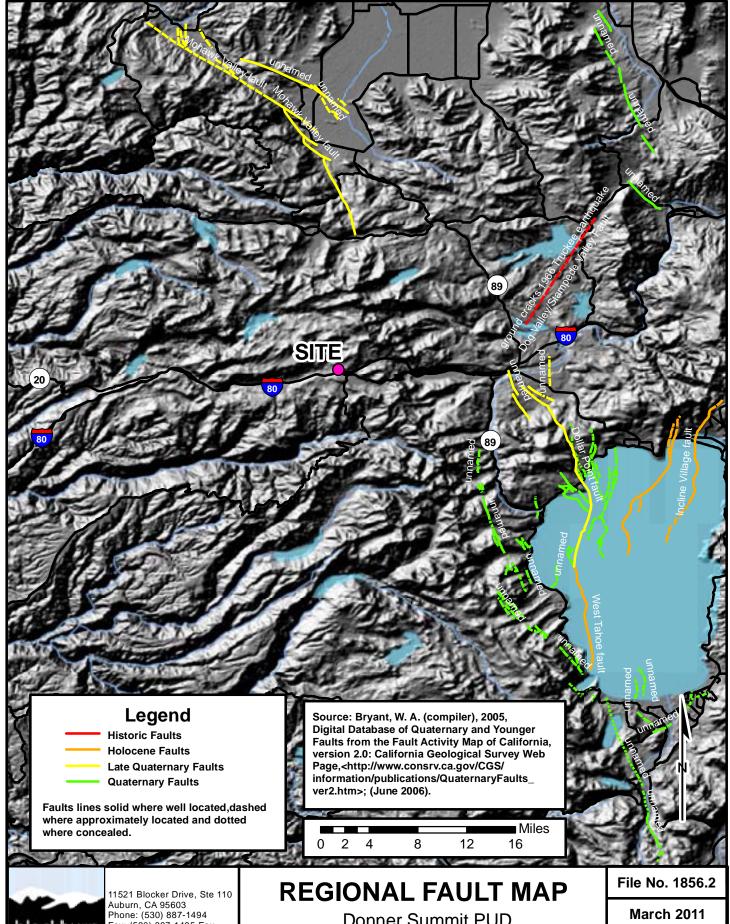

Figure 4 – Soils Map

Figure 5 – Regional Fault Map




blackburn consulting

11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone:(530) 887-1494 Fax: (530) 887-1495 www.blackburnconsulting.com

Nevada County, California

Figure 3

blackburn consulting Fax: (530) 887-1495-Fax www.blackburnconsulting.com

Donner Summit PUD Nevada County, California

Figure 5

Test Pits Logs Legends to Logs Seismic Refraction Profiles

	I	LOG OF TH	EST PI	T TP1							
Date Excavated:	10/27/10 Logged by: RCP Depth to Water (ft):								No	ne	
Equipment:	CASE 580K	Surface Elev	ation(ft):_	~6628.8	Ti	Time of Reading:					
(feet) GRAPHIC LOG	MAT	ERIAL DESCRI	PTION		SAMPLE	SAMPLE NUMBER	HAND PEN. (tsf)	MOISTURE (%)	DRY UNIT WT. (pcf)	LAB	
5	Silty Sand, SM, (loose), of 40-50% organics. Cobbles and Boulders with brown, (medium dense), n and Boulders 6-30" in diar	n Silty Sand mati		olive		1				PA, I	
-	Essential excavation refusion No groundwater encounter Backfilled with native mat	red.	010.								
		OG OF TH	EST PI	T TP2							
	10/27/10				Do	epth to	Water	(ft): _	No	ne	
Equipment:	CASE 580K	Surface Eleva	ation(ft):_	~6620.7	Ti	me of	Readin		T 1		
(feet) GRAPHIC LOG	MAT	ERIAL DESCRI	PTION		SAMPLE	SAMPLE NUMBER	HAND PEN. (tsf)	MOISTURE (%)	DRY UNIT WT. (pcf)	LAB	
	Silty Sand, SM, (loose), da 40% organics. Cobbles and Boulders with (medium dense), moist, ap Boulders 6-24" in diamete	ark brown, moist n Silty Sand mate proximately 40%	rix, GM, c	/ olive gray,	, -	572					
- 5 -	Essential excavation refusa No groundwater encounter Backfilled with native mat	red.	010.								
Aubu blackburn Phone	1 Blocker Drive, Suite 110 rn, CA 95603 e: (530) 887-1494 Fax: (530il: bcistaff@blackburnconst		D	onner Sun			ngs, C		xpansi	on	

]	LOG OF TI	EST PI	T TP3						
Date Excavated:	10/27/10	_ Logged by: _	R	СР	D	epth to	Water	(ft): _	No	one
Equipment:	CASE 580K	_ Surface Elev	ation(ft):	~6622.6	Ti	me of	Readin	g:		
DEPTH (feet) GRAPHIC LOG	MAT	TERIAL DESCRI	PTION		SAMPLE	SAMPLE NUMBER	HAND PEN. (tsf)	MOISTURE (%)	DRY UNIT WT. (pcf)	LAB TESTS
	Silty Sand, SM, (loose), of 40-50% organics. Cobbles and Boulders with (medium dense), moist, a Boulders 6-30" in diameter	th Silty Sand mate	rix, GM, o	olive gray,		1				PA, DS, C
 	Essential excavation refus No groundwater encounte Backfilled with native ma	ered.	010.							
]	LOG OF TI	EST PI	T TP4						
Date Excavated:	10/27/10	_ Logged by: _	R	СР	D	epth to	Water	(ft): _	No	one
Equipment:	CASE 580K				Time of Reading:					
DEPTH (feet) GRAPHIC LOG	МАЛ	TERIAL DESCRI	PTION		SAMPLE	SAMPLE NUMBER	HAND PEN. (tsf)	MOISTURE (%)	DRY UNIT WT. (pcf)	LAB TESTS
	Silty Sand, SM, (loose), of 40-50% organics. Cobbles and Boulders with (medium dense), moist, a Boulders 6-30" in diameter	lark brown, moist th Silty Sand mate pproximately 50%	rix, GM,	olive gray,		57.7				
	Essential excavation refusive No groundwater encounted Backfilled with native ma	ered.	010.							
Aubu blackburn Phone	1 Blocker Drive, Suite 110 rn, CA 95603 e: (530) 887-1494 Fax: (53 iil: bcistaff@blackburncons	30) 887-1495	D	onner Sun			ngs, C		xpans	ion

		LOG OF TH	EST PI	T TP5						
Date Excavated:	10/27/10	Logged by: _	R	CP	D	epth to	Water	(ft): _	No	ne
Equipment:	CASE 580K	Surface Eleva	ation(ft):	~6635.5	Ti	Time of Reading:				
(feet) GRAPHIC LOG	MA	TERIAL DESCRI	PTION		SAMPLE	SAMPLE NUMBER	HAND PEN. (tsf)	MOISTURE (%)	DRY UNIT WT. (pcf)	LAB
5 -	Silty Sand, SM, (loose), 40-50% organics. Cobbles and Boulders w brown, (medium dense), and Boulders 6-18" in dense of the second of the secon	dark brown, moist with Silty Sand matr , moist, approximat iameter. usal at 3.25 feet. tered.	, approxii ix, GM, c ely 30%	olive						
Date Excavated:	10/27/10	LOG OF THE			De	epth to	Water	(ft): _	No	one
Equipment:	CASE 580K				Time of Reading:					
DEPTH (feet) GRAPHIC LOG	MA	TERIAL DESCRI	PTION		SAMPLE	SAMPLE NUMBER	HAND PEN. (tsf)	MOISTURE (%)	DRY UNIT WT. (pcf)	LAB TESTS
	Silty Sand, SM, (loose), 40-50% organics. Cobbles and Boulders w brown, (medium dense), and Boulders 6-24" in d	dark brown, moist with Silty Sand mati, moist, approximatiameter. usal at 5.5 feet. tered.	, approxii	olive		0,2	H			I
Aubu blackburn Phone	1 Blocker Drive, Suite 110 rn, CA 95603 e: (530) 887-1494 Fax: (5 iil: bcistaff@blackburnco	530) 887-1495	D	onner Sum S		PUD Sprii 1856	ngs, C		xpansi	on

		LOG OF TH	EST PI	T TP7						
Date Excavated:	10/27/10	Logged by: _	R	СР	D	epth to	Water	(ft): _	No	ne
Equipment:	CASE 580K	Surface Eleva	ation(ft):	~6639.5	Time of Reading:					
(feet) GRAPHIC LOG	MA	TERIAL DESCRI	PTION		SAMPLE	SAMPLE NUMBER	HAND PEN. (tsf)	MOISTURE (%)	DRY UNIT WT. (pcf)	LAB
- 5 -	Silty Sand, SM, (loose), 40-50% organics. Cobbles and Boulders w (medium dense), moist, Boulders 6-36" in diame Essential excavation refu No groundwater encount Backfilled with native m	ith Silty Sand matr approximately 40% ter. usal at 3 feet.	rix, GM, o	olive gray,	-					
		LOG OF TH	EST PI	T TP8						
Date Excavated:	10/27/10	Logged by: _	R	CP	D	epth to	Water	(ft): _	No	ne
Equipment:	CASE 580K				Ti	me of	Readin	ng:		
DEPTH (feet) GRAPHIC LOG	200	TEDIAL DESCRI	DELON		SAMPLE	SAMPLE NUMBER	HAND PEN. (tsf)	MOISTURE (%)	DRY UNIT WT. (pcf)	LAB
	Silty Sand, SM, (loose), 40-50% organics. Silty Sand, SM, (medium Cobbles and Boulders w brown, (medium dense), and Boulders 6-18" in di Essential excavation refu No groundwater encount Backfilled with native medium silters with the second	n dense), olive gray ith Silty Sand matr moist, approximat ameter. usal at 5.5 feet. tered.	, approxii y, moist. rix, GM, c		78	N 1	H H	W S	D	PA, R
Aubu blackburn Phone	1 Blocker Drive, Suite 110 rn, CA 95603 e: (530) 887-1494 Fax: (5 iil: bcistaff@blackburncor	530) 887-1495	D	onner Sum S		t PUD a Sprii 1856	ngs, C		xpansi	on

UNIFIED SOIL CLASSIFICATION (ASTM D 2487-06)										
MATERIAL TYPES	CRITERIA FOR	ASSIGNING SO	IL GROUP NAMES	GRAPHIC SYMBOL	GROUP SYMBOL	SOIL GROUP NAMES				
	GRAVELS	CLEAN GRAVELS	Cu ≥ 4 AND 1 ≤ Cc ≤ 3		GW	WELL-GRADED GRAVEL				
COARSE-	>50% OF COARSE	<5% FINES	Cu < 4 AND/OR 1 > Cc > 3		GP	POORLY-GRADED GRAVEL				
GRAINED	FRACTION RETAINED	GRAVELS WITH FINES	FINES CLASSIFY AS ML OR MH		GM	SILTY GRAVEL				
SOILS	ON NO. 4 SIEVE	>12% FINES	FINES CLASSIFY AS CL OR CH		GC	CLAYEY GRAVEL				
>50% RETAINED	SANDS	CLEAN SANDS	Cu ≥ 6 AND 1 ≤ Cc ≤ 3		sw	WELL-GRADED SAND				
ON NO. 200 SIEVE	<50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	<5% FINES	Cu < 6 AND/OR 1 > Cc > 3		SP	POORLY-GRADED SAND				
SIEVE		SANDS WITH FINES	FINES CLASSIFY AS ML OR MH		SM	SILTY SAND				
			FINES CLASSIFY AS CL OR CH		sc	CLAYEY SAND				
FINE-	SILTS AND CLAYS	INORGANIC	PI>7 AND PLOTS ON OR ABOVE "A" LINE		CL	LEAN CLAY				
GRAINED			PI>4 AND PLOTS BELOW "A" LINE		ML	SILT				
SOILS >50%	LIQUID LIMIT <50	ORGANIC	LL (oven dried)<0.75/LL (not dried)		OL	ORGANIC CLAY OR SILT				
PASSING	SILTS AND CLAYS	INORGANIC	PI PLOTS ON OR ABOVE "A" LINE		СН	FAT CLAY				
NO. 200 SIEVE			PI PLOTS BELOW "A" LINE		МН	ELASTIC SILT				
SIEVE	LIQUID LIMIT >50	ORGANIC	LL (oven dried)<0.75/LL (not dried)		ОН	ORGANIC CLAY OR SILT				
HIGHLY	ORGANIC SOILS		RGANIC MATTER, , ORGANIC ODOR	**** ***** ****	PT	PEAT				

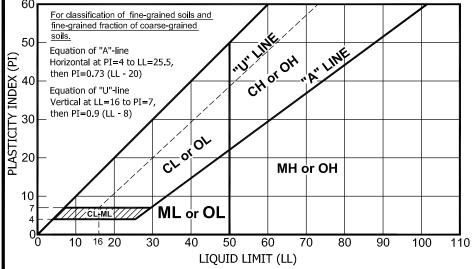
NOTE: Cu=D₆₀/D₁₀ $Cc=(D_{30})^2/D_{10} \times D_{60}$

Auger or backhoe cuttings

SAMPLE TYPES

Modified California

Shelby tube


Rock core

Standard Penetration (SPT)

BLOW COUNT

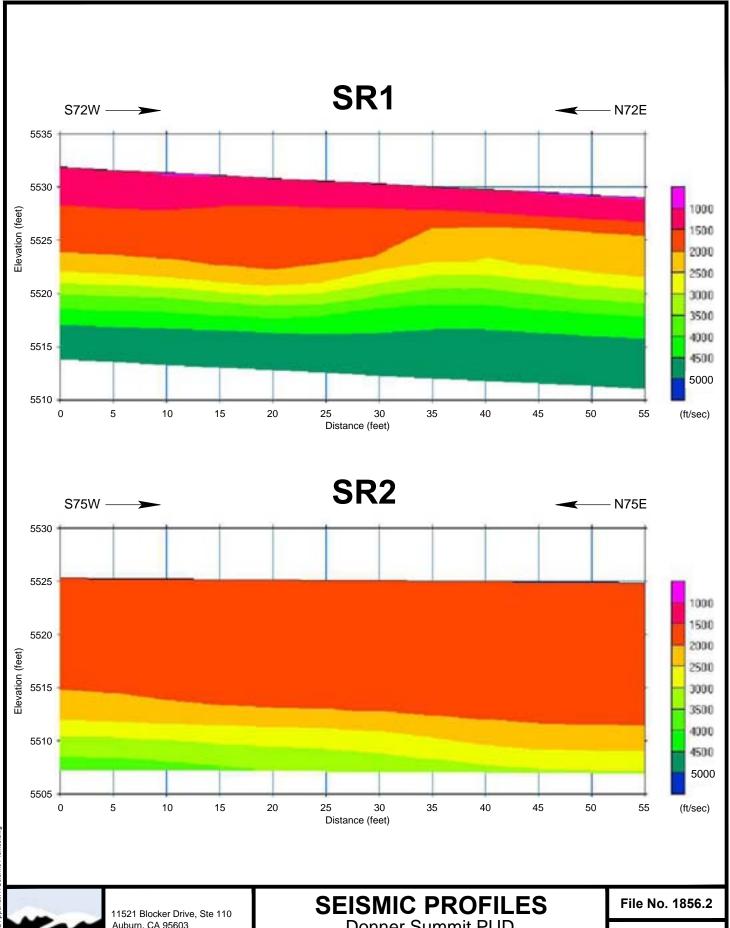
The number of blows of a 140-lb. hammer falling 30-inches required to drive the sampler the last 12-inches of an 18-inch drive. The notation 50/4 indicates 4-inches of penetration achieved in 50 blows.

ADDITIONAL TESTS

- Consolidation
- CP Compaction Curve
- CR Corrosivity Testing
- CU Consolidated Undrained Triaxial
- DS Direct Shear
- EI Expansion Index
- Permeability
- PA Partical Size Analysis
- Plasticity Index
- PP Pocket Penetrometer
- R - R-Value
- Sand Equivalent
- SG Specific Gravity
- SL Shrinkage Limit
- SW Swell Potential
- TV Pocket Torvane Shear Test
- UC Unconfined Compression
- UU Unconsolidated Undrained Triaxial

GROUND WATER LEVELS

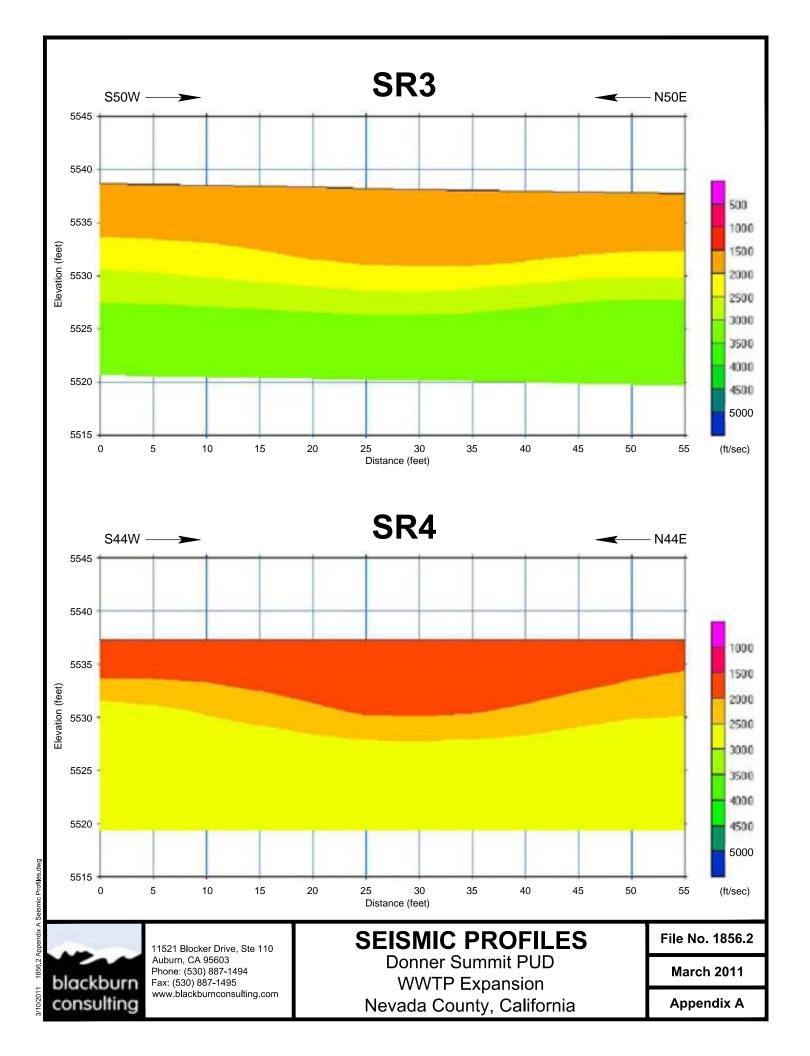
Later water level after drilling



Water level at time of drilling

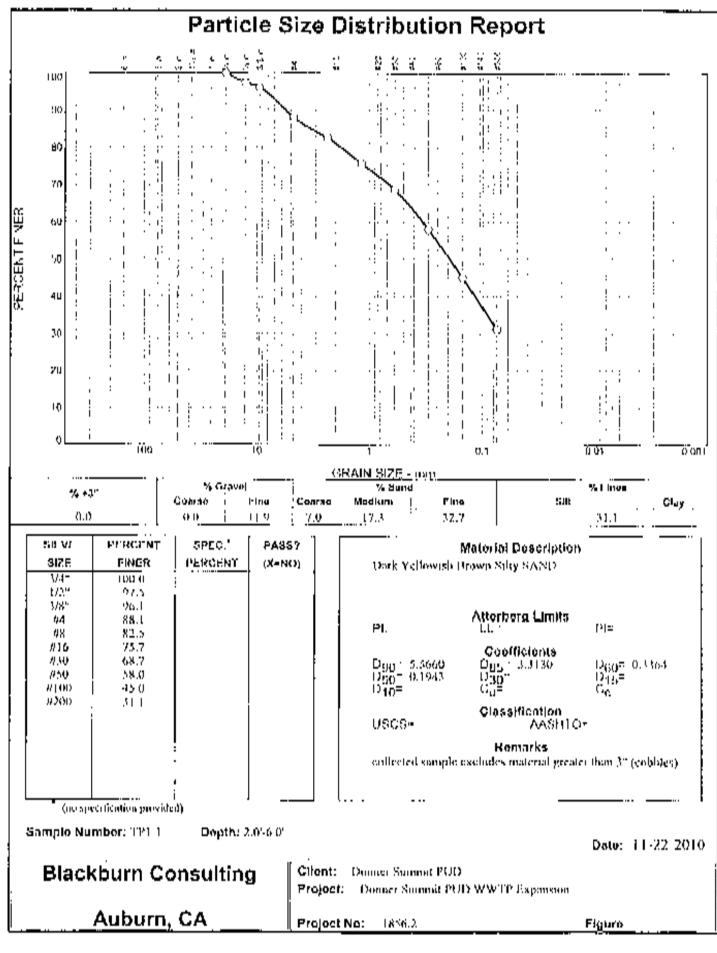
11521 Blocker Drive, Ste 110 Auburn, CA 95603 Phone: (530) 887-1494 Fax: (530) 887-1495 www.blackburnconsulting.com

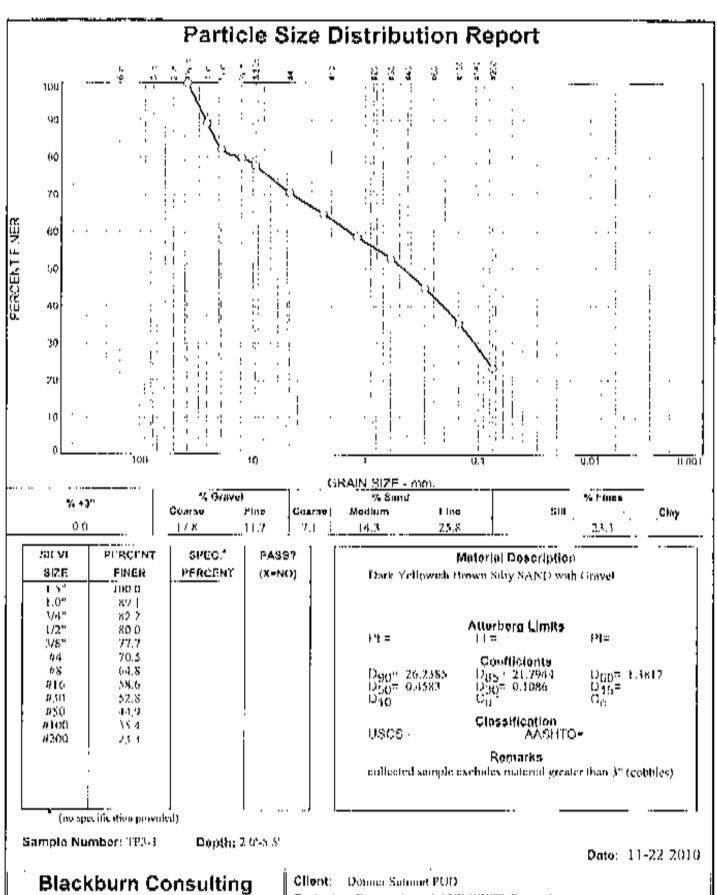
BORING LOG / TEST PIT LEGEND AND SOIL DESCRIPTIONS


blackburn consulting

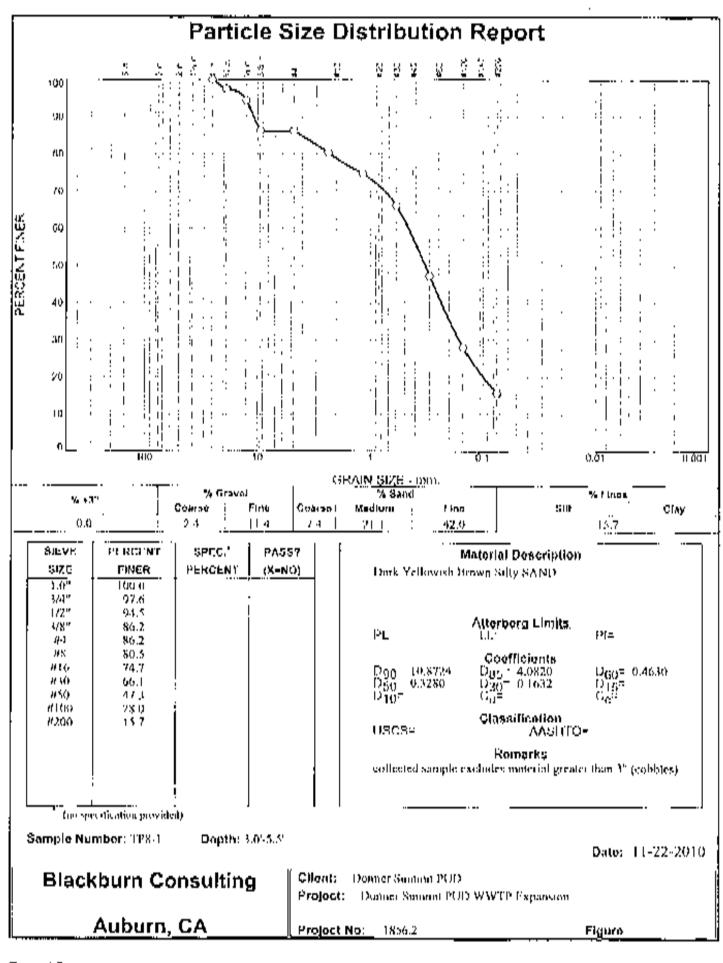
11521 Blocker Drive, Ste 110 Auburn, CA 95603 Phone: (530) 887-1494 Fax: (530) 887-1495 www.blackburnconsulting.com

Donner Summit PUD WWTP Expansion Nevada County, California

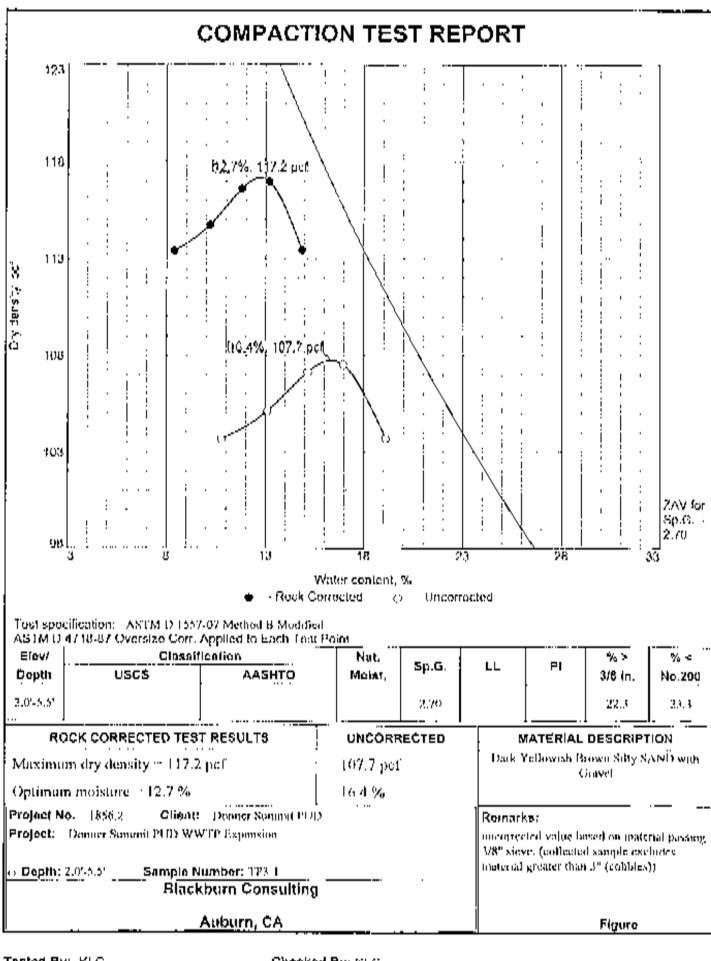

March 2011


Appendix A

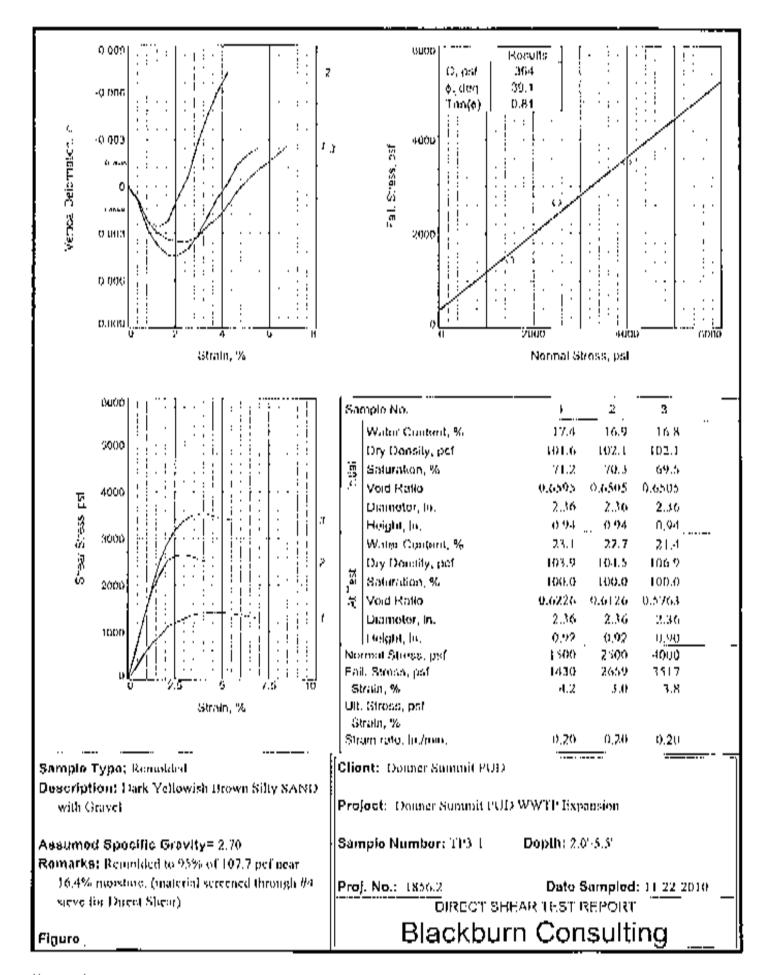
Laboratory Test Results



Donner Summit PUD WWTP Expansion


Auburn, CA 1856.2 Project No:

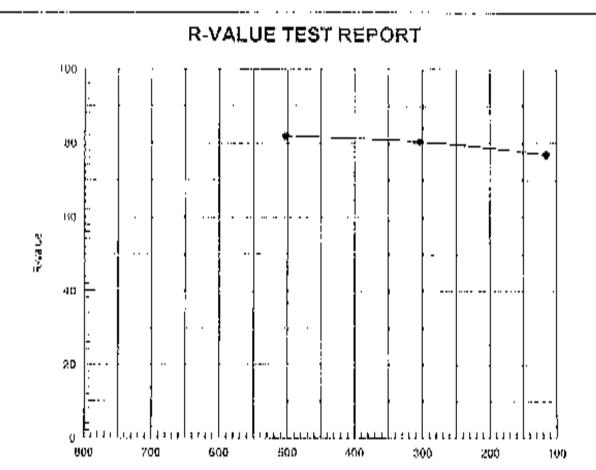
Figure


Tasted By: Kt.C.

Checked By: KLC

Tested By: KLC

Checked By: KLC



Resistance R-Value and Expansion Pressure - Cal Yest 301

No.	Gompact. Prossuro osi	Density paf	Moist. %	Expansion Prossure paf	Horizontal Press. psi <u>@ 16</u> 0 psi	Sample Height In.	Exad. Pressure pai	R Value	R Value Corr,
	350	114.3	5.8	92	18	2.49	147	83	83
2	350	[114.8	8.0		20	2.48	259	[] 81	81
3_	350	115,2	9.1	52		5.48	215	81	8)
, _			l	l. <u></u>					

Tost Results Material Description Pourly-graded SAND with SILT and R-value at 300 psi exudation pressure = 87 GRAVEL, light olive brown Project No.: 1856.2 Tested by: MDR Checked by: RBL Project:Donner Summit PUD Expansion Source of Sample: TP-1 Romarks: Dopth: 2.0-6.01 18.9% retained on No. 4 sieve, sample Sample Number: 1 hatched. Dato: 3/2/2011 R-MALUE TEST REPORT Blackburn Consulting

Revistance R-Value and Expansion Pressure - Cal Test 301

No.	Compact. Pronuuro pai	Doubity per	Moist.	Exponsion Pressure psf	Horizontal Press. pai @ 160 pai	Sample Height In.	Exud. Prossuro psi	R Value	R Value Corr,
1	350	114.6	12,(72.	18	2.48	503	8 2	82
7	350	114.1	12.3	17	2.0	2.50	304	80	80
.3	350	114.0	12.5	[· · · · · · · · · · · · · · · · · · ·	23	2.50	115	77	72
		[Γ	[]	ļ	l	· .	L

Expdation Pressure - pd

Test Results Material Description Poorty-graded SAND with SILT and R-value at 300 pai exactation pressure = 80 GRAVICE, dark yellowish brown Project No.: 1856.2 Tosted by: MDR Checked by: RBL Project:Denner Summit PUD Expunsion Source of Sample: TP-8 Oopth: 3.0-5.91 Romarke: 17,5% retained on No 4 sieve, sample. Speciple Number: 1 hatched. Date: 3/2/2011 R-MALUE TEST REPORT Blackburn Consulting

Test Pit Photos Site Photos

Test Pit Photos

TP1 TP1

TP2 TP2

Test Pit Photos

TP3 TP3

TP4 TP4

Donner Summit PUD BCI File No. 1856.2 Test Pit Photos

TP5 TP5

TP6 TP6

Donner Summit PUD BCI File No. 1856.2 Test Pit Photos

TP7 TP7

TP8 TP8

Donner Summit PUD BCI File No. 1856.2 Site Photos

Looking from proposed equalization tank to existing facilities.

The area of the proposed advanced treatment plant building.

Looking across northeast trending gully towards site of proposed equalization tank.

Donner Summit PUD BCI File No. 1856.2 Site Photos

The area of the proposed advanced treatment plant building.

Looking at the area of the proposed equalization tank.

Pavement Section Calculations

CALIFF Vor. 1.1

Unit System : E

Title: Dunner Summit PHD Trittle Index (TE) = 05.0

R Value of Subgrade (Native Soil) -- 50

Required GE | 0000.80 ft

Pase Type AB Class 2

Base Gravel Factor 0001,10 Base R Value 0078,00

0.0032*TI*(160-R VALUE) - 0000.35 ft

Base MAX depth 0002,00 ft Base MIN, depth 0000,35 ft

Depth (0)	Cit	(0)	Depth (A)	(.51)	(f)). (f))	
00.10	02.54	00.25	00.15	02.54	00.38	
00.20	02.54	00.51	00.25	02.54	00.64	
00.30	02.54	00.76	00.35	02.59	00.89	
00.40	02.54	01.02	00.45	02.56	01.14	
00,50	02.54	01.27	00.58	02.56	01.41	
00,60	62.64	01,58	00,65	02,71	01.76	

HMA Safety Factor (GE) 0000-20-0 HMA Ultimate Depth 0000.65-0 (HMA MAX Depth shown in Table)

HMA MIN. Depth (from Base) = 0000,20 ft

HMA MIN Depth (selected) 110000 20 ft

Note: Positive Residual GI: indicates over design.

Mote: Negative Safety Factor in Base.

.....

HMA 0						∂° Cost \$/y^2	HMA GF
00.25	$00\ 00$	00.39	00.00	00.00	00.22	0000,00 0000,00	02.54
00.45	$00\ 00$	00.35	6000	00.00	00.47	0000 00 0000 00	02.54

***** PINISH *****

CALFF Vol. 1.1

Unit System F

Title: Denise Sacarat PDD/ Traffic Index (TI) + 06.0

R. Value of Subgrade (Native Sed) 30

Required GH: - 0000 96 ft

Pase Type -- AB Class 2

Base Gravel Factor --- 0001.10 Base R. Value --- 00/8.00

0.0032*TI*(100-R MAL19B) + 0000-42 B

Base MAX depth + 0002,00 ft Base MIN depth + 0000 35 ft

Depth (ft)	GF	GH: (ff)	Depth (ft)	GF	GE (B)	
00.10	02.31	00.23	00.15	02.31	00.35	
00.20	02.31	00.46	00,25	02.31	00.58	
0000	02.31	00.69	60.33	02.31	00.81	
00.40	02.51	00.92	00.43	02.31	01.04	
00.50	02.31	01.16	90.55	02.34	01.29	
00.50	02.41	01.45	00.65	02.48	01.64	
00.70	02.54	03.78	00.75	02.60	01.95	
00.80	02.65	02(12)	00.85	02.71	02.50	

HMA Safety Factor (GE) = 0000 20 n HMA Ultimate Depth 0000.80 8 (HMA MAX, Depth shown in Table)

HMA MIN, Depth (from Base) 0000,20 ft

BMA MIN Depth (selected) 0000,20 ft

Note: Positive Residual GE inducates over-design

Note: Negative Salety Factor in Base

1јМД 0	tira. N	1 Pasc p	P Pass ft	s Subba A	se Res (ft	ita Cosi \$7922	HMA-GF	
						- /		
00.25	00.00	00.38	(10,00)	00.00	00.00	00000.00	02.31	
00.30	00.00	00,33	(10,00)	00.00	00.12	00.0000	02.34	
00.35	00.00	00.38	00,00	00,00	00.23	00000,00	02.34	
00.40	00.00	00.35	00.00	00.00	00.35	unou,on	02.34	
00.45	00 00	00.35	00.00	00.00	00.46	0.00(1,00)	02.34	
00.50	$00 \ 00$	00.43	00.00	00 00	00,58	0000 00		

***** PROUSB *****

Unit System 10

Pule: Donner Samma POD Prattic Index (T1) = 07.0

R Value of Subgrade (Mative Soil) S0

Required GR = 0001.12 ft

Bose Type AB-Class 2

Base Gravel Factor = -0001.10 Base R. Value = -0078.00

0.003Z*TT*(100-R.VALUE) ~ 0000.49 fc

Base MAX, depth 0002,00 ft Base MfN, depth 0000,35 ft

Depth (0)	037	(0)	Depth (0)	GF	(n)	
00.10	02.14	00.21	00.15	02.14	00.32	 ••••
00.20	02.16	00.43	00.25	02.14	00.54	
00,30	02.14	00.64	00.35	02.14	00.75	
00,40	02.14	OO KO	110,45	02.14	00,96	
00.50	02.14	01.07	00.55	02.17	0 19	
00.60	02.23	01.34	00.65	02.29	01.49	
00.70	02.35	01.65	00.75	02.40	01.80	
00.80	02.46	01.97	00.85	02.51	02.13	
00,90	92.55	02.30	00.95	03.60	02.47	

HMA Safety Factor (GP) = 0000 20 ft HMA Ultimate Depth = 0000 25 ft (HMA MAX, Depth shown in Table)

HMA MIN. Depth (from Base) -- 0000.20 ft

HMA MIN, Depth (selected) 0000 20 ft

Note: Positive Regulard GE indicates ever degign,

.....

Note: Negative Safety Factor in Page

TPB T-Base B-Base Sublane Resstiff Cost - HMA-GF HMA ft. 11 n ſι íι l'e \$/y^3 00.35 00.00 00.35 00.00 00.00 00.01 0000.00 02.14 00.40 00.00 00.3500.00 00.00 00.12 0000.00 02.14 00.45 00.00 00.3500.0000.0000.23 0000.00 02.14 00,50 00,00 00.3500.0000.0000.34 0000.00 02.14 00.5500.0000.3500 (0) 00.00 00.46 0000.00 02.17 00.60 00.00 00.35 00.0000.00 00.60 0000.00 02.23

***** PINISH *****

CALIFF Vor. 1.3

Unit System + B.

Tatle: Domini Saliment PUD Tittlife Index (TI) = 07.5

R. Value of Subgrade (Native Soil) -- 50

Required GR = 0001,20 ft

Base Type Aft Class 2

Base Gravel Factor 0001-10 Base R Value 00078,00

0.0032*TT*(100-R.VALDE) = 0000 53 & Base MAN, depth = + 0002,00 0

Base MIN, depth 0000.35 ft

Depth (ft)	(31)	(10)	Depth (ft)	(11)	(31) (ft)
	· · · · ·				
00.10	02/02	00.21	00.15	07,07	00.31
00.20	07.67	00.41	00.25	02.07	00.52
00.30	02.07	DO:62	00.35	02.07	00.72
00.40	02.07	00.83	00.45	02.07	00.93
00.50	02.07	01.04	00.55	02.09	01.15
00.60	02.16	01.30	00.65	02.21	01.44
00,70	02,27	01.59	00.75	02.32	01.24
06.80	02.37	01,90	00.83	02,42	02.06
00.90	07.47	02.22	00.95	02.51	02.38
01.00	02.56	02.56	01.05	02.60	02.73

HMA Salety Factor (GE) 0000.20 ft HMA (flumate Depth 0000.00 ft (HMA MAX, Depth shown in Table)

HMA MIN. Depth (from Base) = 0000-20-0

HMA MIN. Depth (selected) - ~ 0000.20 ft

Note: Positive Residual GIC indicates over design.

Note: Negative Safety Factor in Base.

HMA B	1774s ()	T-Base ft	B-Base B	Subbase 0	Res-G	t: Cast - \$/y^2	HMA GP	
••• • • • • • • • • • • • • • • • • • •								
-00.35	(0) (0)	00.45	00.00	00.00	00.07	0000000	02.02	
00.40	00.00	00.35	00.00	00.00	00 01	00.0000	02.07	
00.45	00.00	00.35	00.00	00.00	00.12	00.000	02 07	
00.50	00.00	00.35	00.00	00.00	00.22	0000000	02.07	
00.55	00.00	00.35	00.00	00.00	(0), (3)	0000000	02.09	
00.60	00.00	00.35	00.00	00.00	00.48	00.000	02.16	
00.65		00.35	00.00			00.000	02.21	

***** FINISH *****

Unit System - E.

Tatle - Danner Summit POD Traffic Index (Tf) = 05.0 R Value of Subgrade (Native Soil) = 50 Required OE = 0000.80 ft

Depth (ft)	GF	GE (f)	Depth (it)	(3):	CFE (III)	
00.10	02.54	69.25	00.15	02.54	00.38	
00.30	0.3.54	00.51	00.25	02.54	00.64	
00.30	02.54	00.76	00.35	03.84	00.89	
00.40	03.54	01.02	00.45	02.54	01-14	
00.59	03.54	01.27	00.55	02.56	01.41	
00.69	0.1.64	01.58	00.65	03.71	01.76	
IMA Sal	ery Paci	or (GE)	- 0000.10	n		

HMA Uttimate Depth 0000.63 ft (HMA MAX, Depth shown in Table)

HMA MIN Depth (selected) == 0000.30 ft

Note: Positive Residual GE indicates over design.

Note: Negative Salety Pactor in Native Soil.

HMA	1124	T-Hang	на Проф	Suphase	Resid	ar Cost	HMA OF
It	11	11	Ц	ĮI.	11	57912	
	•••••		• • • • • • • • • • • • • • • • • • • •		••••••	· · · · ·	
00.55	00 00	00.00	DO DO	CO OD	00.00	θμαα οσ	02:54
(0) 40	1313 1919	1000-0103	DOM:	4KLOD	00.77	OHAD DO	02.54
00.45	00 00	00.00	DOMESTIC	IKT OD	DD 344	40000 DD	0.5.54
00.50	00 00	00 (II)	IKLOD	OD DO	00.47	Official and	07.54
00.55	00 00	000 000	400 009	OD INF	1640	0000 00	02.56

Note: This decays requires a sofety Factor for GP. This requires that a design be selected that has a value as close as possible to 0.1 in the 'Res-CPC column. Nucl. a design is generally shown in the foreign of the above table.

Unit System +11

Title: Donner Samma PUD Titthe Index (TI) = 06.0

R. Value of Subgrade (Native Soil) > 50

Required GE = 0000.96 ft

Depth (it)	(SF	(iE (ft)	Depth (ft)	ti P	(al: (ft)	
00.10 00.20 00.30 00.40 00.50 00.60 98.70 00.80	02.31 02.31 02.31 02.31 02.31 02.41 02.54 02.65	00.23 00.46 06.69 00.92 01.16 01.43 01.78 02.12	00.15 00.25 00.35 00.45 00.65 00.65 00.75	02.31 02.31 02.31 02.31 02.34 02.48 02.60 02.71	00.35 00.58 00.81 01.04 01.29 01.61 01.95 02.30	

HMA Safety Factor (GE) = 0000.10 ft HMA Ultimate Depth = 0000.80 ft (HMA MAX, Depth shown in Table)

HMA MIN, Depth (selected) 0000,30 R

Note: Positive Residual GII indicates over design.

Note: Negative Safety Lactor to Native Soil

цмд	וניוןן	T Hpp	[1] Diamer	Sighbase	Rep 0	44 Cost	DMA-GR
4	4	It	I\$	r	Ir	\$7y^2	
•••••	•••••						
130.45	(ICLDD)	DD 00	HO DO	OO DH	00.08	(SECOLE)	92.31
ISS SQ	(id bi)	DD.OQ	HO DO	00.00	00.20	(индоли)	D2 31
18855	(ICLDD)	00 (0	OCC DO	00.00	00.11	0000,00	02.34
DAKK	da bo	00 (0	HICL CODE	00.00	00,49	481,00,481	02.41
IMP 65	OO DD	an an	11(1 (21)	era mir	00.65	ниодалия	D7 4K

Note: This design requires a safety Factor for GF. This requires that a design he selected that has a value as chage as possible to 0.1 in the Resetti Coolumn. Such a design is scorefully shown in the figurous of the above table.

CONTRACTOR STATES

Drift System = E.

Tatle: Donner Sommit PCD
 Traffic Index (TI) = 07.0
 R.Vatne of Subgrade (Native Soil) = 50
 Required GE = 0001 12.8

Orpih (81)	City	Gr. (0)	13 cpsh (0)	Cafe	GB (0)		
00.10	02.14	IMI 21	0015	02.14	1011 322	•••••	•
00.20	02.14	181.4,5	00.25	02.14	DH 5-1		
00.50	D2 14	INLA4	00.15	02.14	00.75		
00.40	02 [4	H(LKG	00.43	02.14	00.96		
au sa	D2.14	01.07	00.55	02.17	01.19		
00.60	02.2%	101 141	00.65	02.29	01.49		
00.70	02.15	01.65	00.75	02.40	01 KD		
OD.NO	02.46	01.97	00.85	02.51	02.13		
00.90	02.55	02.40	00.95	02.60	02.47		

HMA Safety Factor (CO) = 0000.10 ft HMA Ultimate Depth (0000.98 ft (HMA MAX, Depth shown in Table)

HMA MIN Depth (selected) 0000.30 ft

Note: Positive Residual GE unheater over-design Note: Negative Sufety Factor in Native Soil

.....

BMA	TPIS	T-Base	B-Base	Subbus	e Read)	F. Cost	MMAKIF
II	18	ſt	ſt	n	ıt	\$/y^2	
00.55	00.00	00.00	00.00	00.00	00.07	00 00810	02.17
00.60	00.48)	00.00	00.00	00.00	00.22	00 00 x %	02.23
00.65	00.48)	00.00	00.00	00.00	00.37	00000	02.29
00.70	00.00	00.00	O() (H)	00,00	00.53	WANG OR	02.35

Note: This design requires a safety Factor for GF. This requires that a design be selected that has a value as close as possible to 6.1 in the 'Res-GF' enfance. Such a design is generally shown in the first row of the above table.

***** MISH *****

CALEP Ver. 1.1

Unit System | E

Tatle Donner Surmot PUD Traffic Index (TI) = 07.5

R Value of Subgrade (Native Sod) = 30

Required GE 0001,20 ft

Depth (ft)	Cit	(ft)	Dopth (11)	4 GP	(it)	
00.10	02/07	00.21	00.15	03.07	1111 31	
(00.20)	02/07	00.41	00.25	D2 G7	00.52	
00.30	02.07	00.63	00.15	02.07	401.72	
00.40	02.07	00.83	00.45	03.07	00.93	
(00.50)	02.07	01.04	00.55	02.09	01.15	
00.60	02 16	01.30	64.00	102.21	114 /14	
00.70	u2 27	01.59	00.75	02.32	01.74	
00.80	02.37	01.90	00.85	03.42	02.06	
00.90	02.47	03.22	00.95	02.51	02.38	
01.00	02.56	03.56	01.03	02.60	03.74	

HMA Safety Frictor (GH) + 0000.10 ft HMA Ultroade Depth + 0001.00 ft (HMA MAX, Depth shown in Table)

HMA MIN. Depth (selected) = - 0000.30 ft

Note: Positive Residual GF indicates over-design. Note: Negative Safety Factor in Native Sud

DMA. TPR T Base B Base Subbase Res GE Cost - HMA-GE 11 Ιţ ΙĿ ü П n 5/5 °Z 00,00 00,00 (00,00)1000,0000,00 00.10 0000.00 02.16 DD 65 00.00 00.00 00,00 00.00 00.2400000002.21DD 70 - 00 QD - 00 QQ 00400 00 00 00,000 0000 00 02.2700,00 00,00 00,00 00,00 00,00 00.54 0000,00 02,31

....

.

Note: This design requires a safety fractor for GP. This requires that a design be selected that has a value as close as possible to 0.1 in the 'Res GP column. Such a design is generally shown in the Brattow of the above table.

***** FINISH *****